Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Molecules ; 28(3)2023 Jan 21.
Article in English | MEDLINE | ID: covidwho-2287580

ABSTRACT

Real-time polymerase chain reaction (real-time PCR) tests were successfully conducted in an aluminum-based microfluidic chip developed in this work. The reaction chamber was coated with silicone-modified epoxy resin to isolate the reaction system from metal surfaces, preventing the metal ions from interfering with the reaction process. The patterned aluminum substrate was bonded with a hydroxylated glass mask using silicone sealant at room temperature. The effect of thermal expansion was counteracted by the elasticity of cured silicone. With the heating process closely monitored, real-time PCR testing in reaction chambers proceeded smoothly, and the results show similar quantification cycle values to those of traditional test sets. Scanning electron microscope (SEM) and atomic force microscopy (AFM) images showed that the surface of the reaction chamber was smoothly coated, illustrating the promising coating and isolating properties. Energy-dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), and inductively coupled plasma-optical emission spectrometer (ICP-OES) showed that no metal ions escaped from the metal to the chip surface. Fourier-transform infrared spectroscopy (FTIR) was used to check the surface chemical state before and after tests, and the unchanged infrared absorption peaks indicated the unreacted, antifouling surface. The limit of detection (LOD) of at least two copies can be obtained in this chip.

2.
Trends Food Sci Technol ; 122: 211-222, 2022 Apr.
Article in English | MEDLINE | ID: covidwho-1712999

ABSTRACT

BACKGROUND: In the context of the current pandemic caused by the novel coronavirus, molecular detection is not limited to the clinical laboratory, but also faces the challenge of the complex and variable real-time detection fields. A series of novel coronavirus events were detected in the process of food cold chain packaging and transportation, making the application of molecular diagnosis in food processing, packaging, transportation, and other links urgent. There is an urgent need for a rapid detection technology that can adapt to the diversity and complexity of food safety. SCOPE AND APPROACH: This review introduces a new molecular diagnostic technology-biosensor analysis technology based on CRISPR-Cas12a. Systematic clarification of its development process and detection principles. It summarizes and systematically organizes its applications in viruses, food-borne pathogenic bacteria, small molecule detection, etc. In the past four years, which provides a brand-new and comprehensive solution for food detection. Finally, this article puts forward the challenges and the prospects for food safety. KEY FINDINGS AND CONCLUSIONS: The novel coronavirus hazards infiltrated every step of the food industry, from processing to packaging to transportation. The biosensor analytical technology based on CRISPR-Cas12a has great potential in the qualitative and quantitative analysis of infectious pathogens. CRISPR-Cas12a can effectively identify the presence of the specific nucleic acid targets and the small changes in sequences, which is particularly important for nucleic acid identification and pathogen detection. In addition, the CRISPR-Cas12a method can be adjusted and reconfigured within days to detect other viruses, providing equipment for nucleic acid diagnostics in the field of food safety. The future work will focus on the development of portable microfluidic devices for multiple detection. Shao et al. employed physical separation methods to separate Cas proteins in different microfluidic channels to achieve multiple detection, and each channel simultaneously detected different targets by adding crRNA with different spacer sequences. Although CRISPR-Cas12a technology has outstanding advantages in detection, there are several technical barriers in the transformation from emerging technologies to practical applications. The newly developed CRISPR-Cas12a-based applications and methods promote the development of numerous diagnostic and detection solutions, and have great potential in medical diagnosis, environmental monitoring, and especially food detection.

3.
Biosens Bioelectron ; 192: 113503, 2021 Nov 15.
Article in English | MEDLINE | ID: covidwho-1309167

ABSTRACT

The COVID-19 pandemic has unfortunately demonstrated how easily infectious diseases can spread and harm human life and society. As of writing, pandemic has now been on-going for more than one year. There is an urgent need for new nucleic acid-based methods that can be used to diagnose pathogens early, quickly, and accurately to effectively impede the spread of infections and gain control of epidemics. We developed a flap probe-based isothermal nucleic acid amplification method that is triggered by recombinant FEN1-Bst DNA polymerase, which-through enzymatic engineering-has both DNA synthesis, strand displacement and cleavage functions. This novel method offers a simpler and more specific probe-primer pair than those of other isothermal amplifications. We tested the method's ability to detect SARS-CoV-2 (both ORF1ab and N genes), rotavirus, and Chlamydia trachomatis. The limits of detection were 10 copies/µL for rotavirus, C. trachomatis, and SARS-CoV-2 N gene, and 100 copies/µL for SARS-CoV-2 ORF1ab gene. There were no cross-reactions among 11 other common pathogens with characteristics similar to those of the test target, and the method showed 100% sensitivity and 100% specificity in clinical comparisons with RT-PCR testing. In addition to real-time detection, the endpoint could be displayed under a transilluminator, which is a convenient reporting method for point-of-care test settings. Therefore, this novel nucleic acid senor has great potential for use in clinical diagnostics, epidemic prevention, and epidemic control.


Subject(s)
Biosensing Techniques , Chlamydia trachomatis/isolation & purification , Rotavirus/isolation & purification , SARS-CoV-2/isolation & purification , COVID-19 , DNA, Recombinant , DNA-Directed DNA Polymerase , Flap Endonucleases , Humans , Nucleic Acid Amplification Techniques , Pandemics , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL